
A Modelica-based Model Library for Building
Energy and Control Systems

Michael Wetter, Lawrence Berkeley National Laboratory

July 2009

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

A MODELICA-BASED MODEL LIBRARY FOR BUILDING ENERGY AND CONTROL
SYSTEMS

Michael Wetter
Simulation Research Group, Building Technologies Department

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

ABSTRACT
This paper describes an open-source library with com-

ponent models for building energy and control systems
that is based on Modelica, an equation-based object-
oriented language that is well positioned to become the
standard for modeling of dynamic systems in various in-
dustrial sectors. The library is currently developed to sup-
port computational science and engineering for innovative
building energy and control systems. Early applications
will include controls design and analysis, rapid prototyp-
ing to support innovation of new building systems and the
use of models during operation for controls, fault detec-
tion and diagnostics.

This paper discusses the motivation for selecting an
equation-based object-oriented language. It presents the
architecture of the library and explains how base models
can be used to rapidly implement new models. To demon-
strate the capability of analyzing novel energy and control
systems, the paper closes with an example where we com-
pare the dynamic performance of a conventional hydronic
heating system with thermostatic radiator valves to an in-
novative heating system. In the new system, instead of a
centralized circulation pump, each of the 18 radiators has a
pump whose speed is controlled using a room temperature
feedback loop, and the temperature of the boiler is con-
trolled based on the speed of the radiator pump. All flows
are computed by solving for the pressure distribution in
the piping network, and the controls include continuous
and discrete time controls.

INTRODUCTION
To significantly reduce greenhouse gas emissions asso-

ciated with building operations, development of building
simulation programs along two parallel tracks is needed:
First, the usability of existing building simulation pro-
grams needs to be improved so that they can better support
the design of efficient buildings on a large scale. Second,
to accelerate the innovation of new HVAC components,
systems and control algorithms, a modeling and simula-
tion framework needs to be developed that better meets

the functional requirements of such applications. This pa-
per deals with the second development. Typical functional
requirements include:

1. Faster implementation of models for equipment, sys-
tems and control algorithms, at different levels of ab-
straction.

2. Means for implementing models by tool users in addi-
tion to tool developers.

3. Ability to share models among users.
4. Ability to model continuous time dynamics (for physi-

cal processes), discrete time systems (for discrete time
controls) and state events (such as for switching con-
trols).

5. Extraction of subsystem models for use in isolation
from the total system model (such as for validation, for
more refined analysis, for model reduction, or for use in
operation).

6. Use of simulation models in conjunction with nonlinear
programming algorithms that require the cost function
(such as energy use) to have little numerical noise. This
is important to efficiently solve optimal control prob-
lems that may involve state trajectory constraints and
hundreds of independent parameters that define the con-
trol function.

From these functional requirements result several charac-
teristic features of the software architecture that such a
modeling and simulation environment should have. They
include:

1. Object-oriented modeling to facilitate code reuse.
2. Use of an equation-based language to allow more natu-

ral modeling.
3. Use of a standardized modeling language.
4. Support for interfacing computational models with real

experimental facilities at the component and whole
building level.

5. Support for hierarchical model composition to allow
managing the complexity of large systems.

1

6. Use of a model connectivity framework that allows a
model builder to assemble models in a similar way to
what an experimenter would do on a workbench (cf. the
object-oriented modeling paradigmsummarized in Cel-
lier 1996).

7. Use of symbolic algebra tools to reduce the dimension-
ality of the coupled systems of equations that need to be
solved for simultaneously.

8. Use of numerical solvers that can solve stiff differential
equation systems (which require implicit solvers with
adaptive step size, cf. Hairer and Wanner 1996) that
may contain boolean variables.

This list illustrates that such a computational environment
needs tosimultaneouslysatisfy new requirements with re-
gard to graphical modeling environments, modeling lan-
guage, symbolic and numerical methods, and code trans-
lators (that convert a model description into an executable
program). It is not likely that these requirements can
be met by an incremental evolution of an existing build-
ing simulation program, which typically contains hun-
dreds of thousands of lines of procedural code that mix
program statements describing the physics with program
statements for control algorithms, data management and
numerical solution methods. Such program code does not
allow use of code generators that use symbolic algebra for
reducing the dimensionality of the coupled equation sys-
tems, for automatic differentiation and for index reduction
of differential algebraic equations. It also makes it imprac-
tical to use modern solvers that analyze equation systems
for events and differentiability. Both measures are used
in modern system simulation programs to increase com-
putational efficiency and robustness. To realize a model-
ing and simulation environment that can meet the above
needs, we believe it is most efficient to start with a new
approach that builds on the latest advances in system mod-
eling and simulation. However, such a new environment
for modeling and simulation can still be used in conjunc-
tion with existing building simulation programs using co-
simulation, for example using the Building Controls Vir-
tual Test Bed (Wetter and Haves 2008).

Clearly, the development of such a computational en-
vironment requires expertise from various research disci-
plines such as computer science (for language design and
code generation), mathematics (for symbolic and numer-
ical methods) and engineering (for creating modeling li-
braries). Hence, a tool for such systems should not be
developed by the building simulation community in iso-
lation, but rather together with other industrial sectors to
share resources. This is the approach that is followed
by the Modelica consortium which has been developing
the Modelica modeling language since 1997. Modelica

is an equation-based, object-oriented language for model-
ing of systems that are described by algebraic equations,
differential equations, and difference equations, and that
may contain real variables, integers, boolean variables and
strings (Mattsson and Elmqvist 1997).

Models written in the Modelica language cannot be ex-
ecuted directly. Rather, a simulation environment trans-
lates a Modelica model into an executable program. Sev-
eral commercial and freely available modeling and sim-
ulation environments for Modelica that support textual
and graphical modeling exist. IDA ICE 4.0, to be re-
leased in spring 2009, appears to be the first building
simulation program that will support Modelica.1 For a
list of Modelica modeling and simulation environments,
seehttp://www.modelica.org/tools. While the per-
formance and price of the different tools vary, there has
been significant progress in the development of these tools
over the last few years, and significant investments have
been made in Modelica. For example, in three Euro-
pean ITEA projects (EUROSYSLIB, MODELISAR and
OPENPROD), about 54 Million Euros for 370 person
years are invested to further develop Modelica, Modelica
tools, Modelica libraries and related technology.2

However, what is missing in Modelica is a comprehen-
sive library for building energy and control systems. Thus,
LBNL started an open-source development effort with the
aim of filling this gap. While the library is currently used
within LBNL projects, it is our intention to broaden the
development effort and collaborate with other developers
to create an open-source Modelica library that meets the
need for simulation-based innovation in building systems.
This paper presents the current design of the library, which
is available free of charge, including its source code, from
http://simulationresearch.lbl.gov.

TERMINOLOGY
To facilitate the discussion of our model library, we

will first introduce some terminology. For a more de-
tailed discussion see Tiller (2001) and Fritzson (2004).
In Modelica, a general object is called aclass, which is
typically restricted by the model developer. Frequently
used restricted classes are amodel, a connector, a block
and a function. (There are other class restrictions, but
these will suffice for our discussion.) Amodeltypically
contains time-dependent variables and parameters, which
are time-independent. An equation section is used to de-
clare algebraic and differential equations that relate pa-
rameters, variables and their time derivatives. The equa-
tions are acausal and a Modelica translator sorts and in-

1Seehttp://www.equa.se/news/2008_16.html.
2See http://www.modelica.org/publications/newsletters/

2009-1.

2

verts them when generating executable code. To expose
interface variables, a model can contain instances of a re-
stricted class called aconnector. Connectors cannot con-
tain equations. For example, the Modelica Standard Li-
brary 3.0 defines a connector for a heat port, which has
variables for temperature and heat flow rate. Similarly, a
connector for an analog electrical port contains variables
for voltage and electrical current. These connectors de-
clare the variables for heat flow rate and current asflow
variables, which will cause a model translator to automat-
ically impose conservation equations when multiple con-
nectors are connected with each other. In contrast to a
model, ablock requires the causality of its variables to be
declared. Blocks are typically used to model signal flows
such as in a control algorithm. Modelicafunctionobjects
map inputs into outputs and contain analgorithmsection
with procedural code. Functions cannot have memory and
they cannot contain differential equations. Functions can
be recursive, and they can call other functions that may be
implemented in Modelica, C or Fortran. A model, connec-
tor, function or block can be declared to bepartial. Partial
classes cannot be instantiated. The partial keyword is typ-
ically used to force a model developer to provide a com-
plete implementation before instantiating the class. For
example, the Standard Modelica Library implements for
one-dimensional heat transfer elements the partial model
Element1D that defines two heat port connectors called
port a andport b, variables for∆T andQ̇ and the equa-
tions∆T = Ta−Tb, Q̇a = Q̇ andQ̇b = −Q̇ where the sub-
scripts refer to the port names. The model is declared
partial because the equation that relates the temperatures
with the heat flow rate is not declared at this level of the
object inheritance as it is different for heat conduction, ra-
diation or convection. To group similar classes, classes
are stored in apackagein a tree-like hierarchy. For ex-
ample, the Modelica Standard Library contains the pack-
ageModelica.Electrical which contains the packages
Analog andDigital.

USERS AND DEVELOPERS
Users of theBuildings library can loosely be classified

into model users, model developers, and library develop-
ers.

Model userswill typically graphically compose sys-
tem models using models that are already available in the
Buildings library, theModelica Fluid library (Casella
et al. 2006) and the Modelica Standard Library. For model
users, we are working towards creating a comprehensive
set of component models that will allow modeling a vari-
ety of building energy and control systems.

Model developerswill typically copy and modify exist-
ing component models, using a graphical and textual edi-

tor, or they may implement new models by using object-
inheritance of an existing model. For model developers,
theBuildings library contains partial models that imple-
ment basic functionalities, such as access to states at the
component ports or conservation equations for the fluid
streams, with a variable, sayQ flow for a heat input into
a medium, which a model developer needs to assign when
implementing a model. Using such a partial model, a
model developer can implement a complete component
model with a small set of equations. For example, an ideal
heater or cooler with no flow friction is completely defined
by the code3

1 model H e a t e r C o o l e r P r e s c r i b e d
2 e x t e n d s F l u i d . I n t e r f a c e s.
3 P a r t i a l S t a t i c T w o P o r t H e a t M a s s T r a n s f e r;
4 paramete r Model ica . S I u n i t s . HeatF lowRate
5 Q f low nomina l
6 ”Heat f l ow r a t e a t u=1” ;
7 Model ica . B locks. I n t e r f a c e s. R e a l I n p u t u
8 ” Con t ro l i n p u t ” ;
9 e q u a t i o n

10 Q flow = Q f low nomina l ∗ u ;
11 mXi f low = z e r o s (Medium . nXi) ;
12 end H e a t e r C o o l e r P r e s c r i b e d ;

Library developerswill typically develop the base
models that can be used by model developers, such as
PartialStaticTwoPortHeatMassTransfer in the ex-
ample above. For theBuildings library, basic mod-
els of theModelica Fluid library have been used and
customized for buildings applications. Developing base
models requires a comprehensive understanding of Mod-
elica and of the application domain to ensure that the
models will be computationally efficient and have a high
degree of reusability. Reusing modeling concepts from
Modelica Fluid allowed us to implement theBuildings
library using the best practices that have been developed
over the last six years by theModelica Fluid working
group. By providing the partial models, ready-to-use base
classes are provided to model developers so they can focus
on higher level model implementations.

ARCHITECTURE

When browsing the model library, a user is exposed to
the class package view. To implement new models, the
object-inheritance view is also of importance to under-
stand what models can be reused. After a short discus-
sion of theModelica Fluid library on which our library
is based, we will describe both views.

3For brevity, annotations have been omitted.

3

Controls -- Continuous
Discrete
SetPoints

Fluid -- Actuators -- Dampers
Motors
Valves

Boilers
Chillers
Delays
HeatExchangers
MassExchangers
Media
MixingVolumes
Movers
Sensors
Storage

HeatTransfer
Utilities -- Diagnostics

IO
Math
Psychrometrics
Reports

Figure 1: Package structure of theBuildings library.
Only the major packages are shown.

Modelica Fluid Base Library

TheModelica Fluid library contains component mod-
els for one-dimensional thermo-fluid flow in networks of
pipes. Version 1.0, on which ourBuildings library is
currently based, was released in January 2009. It is in-
tended to become part of the Modelica Standard Library. It
provides models that demonstrate how to implement fluid
flow component models that may have flow friction, heat
and mass transfer. The models demonstrate how to deal
with difficult design issues such as connector design, han-
dling of flow reversal and initialization of states in a com-
putationally efficient way. While many models of this li-
brary can be used for our application domain, we provide
in theBuildings library models that reuse and augment
models fromModelica Fluid where applicable.

Packages of the Buildings Library

TheBuildings library is organized into the packages
shown in Fig. 1. Components in these packages augment
components from the Modelica Standard Library and from
theModelica Fluid library.

The packageControls contains models of controllers
that are frequently used in building energy systems. The
packageFluid.Actuators contains models of valves
and air dampers, as well as of motors that can be used

in conjunction with the actuators. InFluid.Delays,
there is a transport delay model that can be used in
fluid flow systems. A dynamic boiler model is in
Fluid.Boilers and different heat and mass exchanger
models can be found inFluid.HeatExchangers and
in Fluid.MassExchangers. Various medium models
are implemented in the packageMedia, such as for dry
air, moist air and water. These medium models aug-
ment the medium models that are already available from
Modelica.Media. Fan and pump models are stored
in Fluid.Movers. Sensors that can be connected to a
fluid stream are stored inFluid.Sensors. The pack-
ageFluid.Storage contains models of stratified storage
tanks. The packageUtilities contains psychrometric
models and blocks to format and print results to files. In
the future, an interface will be added that allows linking
Modelica models to the Building Controls Virtual Test
Bed (Wetter and Haves 2008), and hence to EnergyPlus.

Most packages include a package calledExamples. The
example files in these packages are used to illustrate the
model use and to conduct unit tests. Currently, there are
around 60 example files.

Class Inheritance

We will now explain how some models are imple-
mented in the library. While a comprehensive explanation
of the whole library implementation is outside the scope of
this paper, we include this section to illustrate how object-
oriented modeling allows reusing the same base classes
for various model implementations. While using object-
oriented class definitions requires more planning when de-
signing a library, it provides the following advantages:

1. The same code is used in many models which makes it
more likely to detect model errors.

2. Code is easier to maintain since features that are shared
by different models can be declared once and propa-
gated by object-inheritance, as opposed to being copied
into different source code sections.

3. Complex models can be implemented using a series of
models of increasing complexity. This facilitates con-
ducting unit tests for isolated model features, thereby
increasing the chance to detect model errors earlier
when they are easier and cheaper to fix.

4. Connectors and variables of similar models share the
same name if they are declared in a common base
class. This facilitates post-processing of simulation re-
sults. For example, because of object-inheritance, a
user knows that a flow resistance element always has
a public variabledp that reports the pressure drop.

5. Inside a system model, component models can be con-
strained to belong to a certain base class. They can

4

PartialTwoPortTransport

PartialResistance

FixedResistanceDpM PartialActuator

PartialTwoWayValve

TwoWayLinear TwoWayExponential TwoWayQuickOpening

PartialDamperExponential

Exponential VAVBoxExponential

Figure 2: Object-inheritance for pressure drop elements with two fluid ports.

then be redeclared to assign an instance of a particu-
lar model inside a system model. This allows treating
instances of component models in a similar way to a
parameter, thereby allowing changing the behavior of a
model. For example, a model for heat transfer in a wall
can be propagated into a building heat transfer model,
thereby allowing the creation of a building model with
different model structure as described in Wetter (2006).

We will now illustrate how object-inheritance was used
to implement two-way valves and air dampers. Figure 2
shows the object-inheritance tree. For the base model, we
used the partial modelPartialTwoPortTransport from
the libraryModelica Fluid. This partial model can be
used to implement models that transport a fluid between
two ports while conserving enthalpy, mass and species
concentration. It defines two instances of a fluid port
which are calledport a and port b. It also defines a
variable that requires a model user to declare with what
medium this model is used (such as dry air, moist air or
water). The model also implements the enthalpy balance
as 0= Ḣa + Ḣb, the mass flow rate balance 0= ṁa + ṁb,
the species flow rate balance 0= ṁX,a+ṁX,b and the pres-
sure balance∆p= pa− pb. Note that how∆p is computed
as a function of the flow rate is not yet specified, since the
equation will be different for different models.

Next, there is a model calledPartialResistance.
This model implements a function that computes the
mass flow rate as a function of pressure drop, ˙m =
f (k,∆p). The functionf (·, ·) is an approximation to ˙m=
sign(∆p)k

√

|∆p| with regularization near zero for numer-
ical reasons and to capture the laminar flow region. How
k is computed is not specified at this level of the object-
inheritance tree.4

There are two different models for specifyingk. The
modelFixedResistanceDpM is a model for a fixed flow
resistance in which the user can specify the point on the

4We used mass flow rate instead of volume flow rate as this leads to
simpler equations. However, it would be easy to implement a model in
which a user can specify the volume flow rate instead of the mass flow
rate.

curve that relates mass flow rate with pressure drop. Given
a nominal mass flow rate ˙m0 and a corresponding pressure
drop∆p0, the model assignsk= ṁ0/

√
∆p0. There are also

parameters that allow a model user to specify where the
transition between turbulent and laminar flow occurs. In
contrast to this model, the modelPartialActuator does
not define howk is computed, because different actuators
require different equations. Instead, it simply instantiates
a connector for an input signal whose value is equal to the
actuator opening, withy = 0 defined as closed andy = 1
defined as open.

Next, the model PartialActuator implements
a partial model for a damper, i.e., the model
PartialDamperExponential, and a partial model for a
two-way valve, i.e.,PartialTwoWayValve. The model
PartialTwoWayValve defines that a valve implementa-
tion needs to specify a flow functionφ(y) = k(y)/k(y= 1)
that relates the valve openingy with the actual flow
coefficientk(y) and the flow coefficient for a fully open
valve,k(y = 1). It also specifies a parameter for the valve
leakagel , i.e, l = k(0) so thatφ(0) = l/k(y = 1).

All these partial models are stored in packages called
BaseClasses that a typical model user does not need to
browse when assembling a system model.

Next, there is a package calledValves with the
model TwoWayLinear which implements the linear
characteristicsφ(y) = l + y(1 − l), and the mod-
elsTwoWayEqualPercentage andTwoWayQuickOpening
that implement valve opening characteristics for equal per-
centage and for quick opening valves. There is also a
package calledDampers that implements models for an
air damper and a variable air volume flow box with expo-
nential damper opening characteristics based on the partial
modelPartialDamperExponential. For example, the
implementation of the two-way valve with linear opening
characteristics is as follows:

1 model TwoWayLinear ”Two−way v a l v e w i t h
2 l i n e a r f l ow c h a r a c t e r i s t i c s ”
3 e x t e n d s BaseC lasses. Par t ia lTwoWayValve;
4 e q u a t i o n

5

Figure 3: Schematic view of the DP system. Each radiator
has a pump in its return pipe.

5 ph i = l + y ∗ (1 − l) ;
6 end TwoWayLinear ;

For brevity, the documentation has been omitted in the
above code. The documentation is html formatted text
that can be translated into a documentation that displays
textual documentation together with the Modelica code.

Similar object-inheritance trees are used to implement
other models such as for three-way valves, for heat ex-
changer models and for measurement sensors.

APPLICATION
We will now show simulations that compare a conven-

tional hydronic space heating system with thermostatic
radiator valves (TRV system) to a hydronic space heat-
ing system with decentralized pumps at each radiator (DP
system). The DP system is similar to the system Geniax,
which the company Wilo presented to the European mar-
ket in March 2009. Wilo reports that promises of the Ge-
niax system include about 20% reduction in heating en-
ergy use and faster room temperature change during and
after night setback. Fig. 3 shows schematically the DP
system, with a pump at each radiator outlet. The TRV sys-
tem has the same configuration, except that there is one
central circulation pump at the boiler outlet, and thermo-
static radiator valves are used for each radiator instead of
the radiator pumps. We modeled both systems using the
Modelica librariesBuildings 0.5.0, Modelica Fluid
1.0 and theModelica Standard Library 3.0. The
models were built and simulated in the Modelica modeling
and simulation environment Dymola 7.1.

Our system was a model of a hydronic heating system
of a building with three floors. Three vertical distribution
pipes served 18 radiators. All mass flow rates were com-
puted based on the pressure distribution in the piping net-
work, which depends on the pump curves, the flow fric-
tion in the individual branches and the pump speed. All
pumps had variable frequency drives that can reduce the
pump speed to one third of the nominal speed. Below that
value, the pumps were switched off. The heat losses of

the rooms were modeled using a finite volume method to
solve for the transient heat conduction through walls and
floors, which we selected to be lightweight constructions.
There was also steady-state heat transfer to the outside to
account for heat losses due to ventilation and heat con-
ductance through the window. In every other room, we
added convective and radiative heat gains during the day
to resemble people and solar heat gains. The room air was
modeled as completely mixed with one state variable.

In the TRV system, each radiator had a thermostatic
valve with a proportional band of 0.5K. The boiler set
point was computed as a function of the outside tempera-
ture, using a heating curve with night setback that corre-
sponds to a reduction of the room temperature from 20◦C
to 16◦C. In the early morning, the heating curve was in-
creased to allow faster recovery from the night set back
temperature. The centralized pump had a variable fre-
quency drive that regulates the pump head.

In the DP system, each radiator had a pump that varied
its speed to draw as much water as needed for tracking the
room temperature setpoint. The control sequence specifi-
cation was not available from the manufacturer. Based on
the available literature (Baulinks 2009), we implemented
the following control algorithm. A proportional controller
determined the speed for each radiator pump based on
the current room temperature control error. The room
set point was 20◦C during the day and 16◦C during the
night. To keep the boiler temperature as low as possible
(for example to maximize the efficiency of a condensing
gas boiler), the boiler temperature setpoint was adaptive
based on the room temperature control error.

In both systems, the boiler temperature setpoint was
tracked using a P-controller with hysteresis. The hystere-
sis was used for switching the boiler on and off. The boiler
switches off if the output signaly of the boiler controller
is y < 0.3. If y > 0.5, the boiler switches on and then
modulates between 0.3 ≤ y ≤ 1. A time relay was used
to avoid excessive short cycling at very low load. All cir-
culation pumps could reduce their speed to 30% of the
nominal speed. Below this threshold, the pump switched
off and remained off until its controller requested 50% of
the nominal pump speed.

Fig. 4 is a view of a subset of the system model as dis-
played by the graphical model editor of Dymola. Each
icon encapsulates a model, which may encapsulate addi-
tional models to enable a hierarchical model definition. In
Fig. 4, on the left are input signals for the room temper-
ature setpoint and the outside air. Next, there are vertical
lines to connect fluid ports at the bottom and top of the
floor. (For the top floor of the building, the model trans-
lator will set the mass flow rates in these pipe segments
to zero, as the top ports are not connected.) In the left

6

Figure 4: View of the two-room model in the graphical
model editor of Dymola.

pipe, we placed a model that computes flow friction. The
grey boxes in the fluid lines are finite volume models for
the radiators. To the right of the radiators are the circu-
lation pumps, and on top of the radiators are the room
models. The room models contain finite volume models
for computing the transient heat flow through the building
constructions. Input to the room models are the outside
temperatures and heat gains. The heat gains were defined
by a time table for the left room, but they were set to zero
for the right room. The red connection lines connect the
room models to the radiators. They equate the tempera-
tures and balance the convective and radiative heat flows,
respectively, between radiator and rooms. There is also
a heat flow connection between the rooms for interzonal
heat transfer. Above the room models are the pump con-
trollers. This two-room model is then instantiated nine
times to form a three-storey house with three vertical dis-
tribution lines, and the distribution lines are connected to
a plant model that contains the boiler and the centralized
system controller. The total system model is composed of
2400 component models that form a differential algebraic
equation system with 13,200 equations. After the sym-
bolic manipulations, there were 8700 equations with 300
state variables. Building the system models for the TRV
and the DP systems, including the models for the room,
the radiator, the boiler and a first version of the controllers,
took about a week of labor.

Fig. 5 shows the trajectories computed by the two sys-
tem models. In the TRV system, the radiator valves open
at night since the room temperature falls below their set
point temperatures of 20◦C. This causes the radiators
to release heat to the room, although at a lower rate be-
cause of the lower supply water temperature. However, in
the DP system, the radiator valves and the boiler switch
off while the room temperature is above the night setback

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

T
 [°

C
]

Boiler set point, supply and return temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24

18

20

T
 [°

C
]

Room temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1
Boiler and radiator valve signals

y

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
Normalized radiator mass flow rates

m
 /

m
0

(a) TRV system

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

T
 [°

C
]

Boiler set point, supply and return temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24

18

20

T
 [°

C
]

Room temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1
Boiler and radiator pump signals

y

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
Normalized radiator mass flow rates

m
 /

m
0

(b) DP system

Figure 5: Comparison of the dynamic system response of
the TRV and DP systems for a lightweight building. The
lower three subfigures show the trajectories of the four
rooms that are closest and farthest away from the boiler,
with the solid lines corresponding to the rooms with heat
gains.

7

temperature, which causes a larger reduction in room tem-
perature at night.

CONCLUSIONS

Model-based system-level analysis of the dynamic per-
formance of building energy and control systems promises
to reduce both research and development expenditures
and time to market of new systems. Such a research
and development process requires a flexible modeling and
simulation environment that allows users to rapidly add
new models of physical equipment and of continuous and
discrete time controls. We showed how object-oriented
equation-based modeling allows addressing some of the
requirements that model-based system-level analysis im-
poses on the modeling and simulation environment. To
better support this process, we started the development of
a library of component models for building energy and
control systems. The models are developed using Model-
ica, an open-source modeling language that has consider-
able support in the system-simulation community, as well
as in various industrial sectors. This broad support al-
lows sharing resources for the development of tools that
are common across many engineering domains, as well as
sharing domain-specific models within the building simu-
lation community.

We discussed the software architecture of our open-
source Modelica library of component models for build-
ing energy and control systems. We also demonstrated
how the models can be used to compare the dynamic per-
formance of a hydronic heating system, with circulation
pumps at each radiator, to a conventional hydronic heat-
ing system with thermostatic radiator valves. Modeling
both hydronic systems, including implementing dynamic
models for a boiler, a radiator and a simplified room with
transient heat conduction took about a week of labor. This
is considerably shorter than it may have taken with many
conventional building simulation programs, as modeling
pressure driven flows and testing different local loop and
supervisory control algorithms are often outside their ca-
pabilities.

Technical challenges remain, however, in the numeri-
cally efficient and robust simulation of such systems, and
in the creation of libraries with robust models. These items
are the subjects of future research and development.

ACKNOWLEDGMENTS

This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231.

REFERENCES
Baulinks. 2009, February. Wilo startet in

ein ”neues Zeitalter der Heizungssysteme”.
http://www.baulinks.mobi/news/2009/0204.htm.

Casella, Francesco, Martin Otter, Katrin Proelss,
Christoph Richter, and Hubertus Tummescheit.
2006, September. “The Modelica Fluid and Media
Library for Modeling of Incompressible and Com-
pressible Thermo-Fluid Pipe Networks.” Edited by
Christian Kral and Anton Haumer,Proc. of the 5-
th International Modelica Conference, Volume 2.
Modelica Association and Arsenal Research, Vienna,
Austria, 631–640.

Cellier, François E. 1996. “Object-Oriented Modeling:
Means for Dealing With System Complexity.”Pro-
ceedings 15th Benelux Systems and Control Confer-
ence. Mierlo, The Netherlands, 53–64.

Fritzson, Peter. 2004.Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1. John
Wiley & Sons.

Hairer, E., and G. Wanner. 1996.Solving ordinary dif-
ferential equations. II. 2nd. Springer series in com-
putational mathematics. Berlin: Springer-Verlag.

Mattsson, Sven Erik, and Hilding Elmqvist. 1997,
April. “Modelica – An international effort to de-
sign the next generation modeling language.” Edited
by L. Boullart, M. Loccufier, and Sven Erik Matts-
son,7th IFAC Symposium on Computer Aided Con-
trol Systems Design. Gent, Belgium.

Tiller, Michael M. 2001.Introduction to Physical Mod-
eling with Modelica. Kluwer Academic Publisher.

Wetter, Michael. 2006, September. “Multizone Building
Model for Thermal Building Simulation in Model-
ica.” Edited by Christian Kral and Anton Haumer,
Proc. of the 5-th International Modelica Conference,
Volume 2. Modelica Association and Arsenal Re-
search, Vienna, Austria, 517–526.

Wetter, Michael, and Philip Haves. 2008, August. “A
modular building controls virtual test bed for the in-
tegration of heterogeneous systems.”Proc. of Sim-
Build. IBPSA-USA, Berkeley, CA.

8

